Part of a National Comprehensive Cancer Network® (NCCN®) Category 1 recommendation for newly diagnosed GBM

Indications For Use
Optune is intended as a treatment for adult patients (22 years of age or older) with histologically-confirmed glioblastoma multiforme (GBM).

Optune with temozolomide is indicated for the treatment of adult patients with newly diagnosed, supratentorial glioblastoma following maximal safe resection, and completion of radiation therapy together with concomitant standard of care chemotherapy.

Selected Safety Information
Contraindications
Do not use Optune in patients with an active implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with implanted electronic devices has not been tested and may theoretically lead to malfunctioning of the implanted device. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective.

Contraindications
Do not use Optune in patients with an active implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with implanted electronic devices has not been tested and may theoretically lead to malfunctioning of the implanted device. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective.

Optune + TMZ has been proven to provide long-term quality survival to patients with newly diagnosed GBM.

Look inside to learn more about putting GBM on pause and life on play.

Please visit Optune.com/IFU for Optune Instructions For Use (IFU) for complete information regarding the device’s indications, contraindications, warnings, and precautions.

OPTUNE® + TMZ HAS BEEN PROven TO PROVIDE LONG-TERM QUALITY SURVIVAL TO PATIENTS WITH NEWLY DIAGNOSED GBM1,2

Barriers to accrual and enrollment in brain tumor trials
page 1100

Treatment-Induced brain tissue necrosis: A clinical challenge in neuro-oncology
page 1118

Oncolytic therapy increases trametinib access to brain tumors and sensitizes them in vivo
page 1131

A large-scale drug screen identifies selective inhibitors of class I HDACs as a potential therapeutic option for SHH medulloblastoma
page 1150

Polysomy is associated with poor outcome in 1p19q co-deleted oligodendrogliomas
page 1164

Association between hippocampal dose and memory in survivors of childhood or adolescent low-grade glioma: a 16-year neurocognitive longitudinal study
page 1176

Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI
page 1184
Founded with a grant from The Pediatric Brain Tumor Foundation of the United States

Kenneth Aldape, Editor-in-Chief
Patrick Y. Wen, Executive Editor SNO
Riccardo Soffietti, Executive Editor EANO

Associate Editors

Jill S. Barnholtz-Sloan
E. Antonio Chiocca
Howard Colman
Linda Dirven
Frank Furnari
Monika E. Hegi
Craig Horbinski
Annie A. Huang
Koichi Ichimura
Minesh P. Mehta

Ryo Nishikawa, Executive Editor JSNO
Darell D. Bigner, Founding Editor

Cover Image

Detail from Fig. 1 from article by Yao et al. "Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygensensitive molecular MRI" beginning on p. 1184.